
This paper is concerned with the design and performance of nonbinary LDPC-coded differential modulation systems. A low-complexity joint detection/decoding method for noncoherent demodulation is proposed, in which the hard-message-passing strategy is used for a joint factor graph. It combines trellis-based differential detection aided with channel prediction and the reliability-based decoding of nonbinary LDPC codes introduced in [1]. The Max-Log-MAP algorithm with soft-in hard-out is used for the differential detection. Simulation results show that the proposed method can offer good performances with a greatly reduced complexity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
