Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://journals.uran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://journals.uran.ua/tarp/a...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.15587/2312-...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of method of increasing accuracy of measuring angular velocity and acceleration of gyrostabilized platform

Authors: Tsiruk, Viktor;

Development of method of increasing accuracy of measuring angular velocity and acceleration of gyrostabilized platform

Abstract

Modern mobile objects have significantly higher velocities, they are significantly more overloaded and uncontrollable mechanical disturbances (shocks, vibrations). Therefore, the requirements for the accuracy of means and methods for measuring the above-defined mechanical values of the instrument navigation complex have become much higher. However, the imperfection of the element base, the absence of new modern sensitive elements, the lack of the use of a new improved shock protection system, the lack of modern algorithmic methods do not allow to significantly improve accuracy and improve tactical and technical characteristics. The object of research in this work is the process of measuring the angular velocity and acceleration of a gyrostabilized platform. Ensuring the accuracy of the arms stabilizer is the most important modern problem, the solution of which ensures the security of Ukraine. According to tactical characteristics, the new weapon stabilizer expands combat capabilities of armored vehicles due to more precise guidance and stabilization on the target, facilitates the crew’s ability to control the tower. Instrumental weapon stabilizer complexes are designed for stabilized guidance and tracking in the horizontal and vertical planes of surface, air and surface targets. The use of a modern element base has significantly improved the characteristics of the entire range of the weapon stabilizer. According to the technical characteristics of the arms stabilizer, it expands the combat capabilities of armored vehicles through more precise guidance and stabilization on the target, facilitates the crew’s ability to control the tower. And also does not require redirection to the same goal after the shot. In this paper, an algorithm is considered that is applied when adjusting the position of the implement relative to the target during rapid joint movement of the tower and the machine. The algorithm is calculated in the mathematical block of the stabilization system. The algorithm is based on a mathematical analysis of the theory of motion of gyroscopes and improved from previous ones by supplementing the equation of motion. The formula is derived in the analytical form for its further application in the mathematical blocks of the stabilization system and calculations are given, as a result of which a mathematical model is obtained. If this mathematical model is introduced into the algorithmic block of the stabilization system, this will improve the accuracy of stabilization. The conclusions analyze the results and give recommendations on the application of the method.

Keywords

УДК 681.2.083, стабілізатор озброєння; гіростабілізована платформа; вимірювання кутової швидкості; вимірювання прискорення., weapon stabilizer; gyrostabilized platform; angular velocity measurements; acceleration measurements., UDC 681.2.083, стабилизатор вооружения; гиростабилизированная платформа; измерение угловой скорости; измерение ускорения.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold