Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия Алтайского ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Piezoelectric Viscosity Sensor with Extended Measuring Range

Authors: Viktor N. Sedalishchev; Alexey V. Seulekov; Roman V. Kraev; Nikita N. Kalinin;

Piezoelectric Viscosity Sensor with Extended Measuring Range

Abstract

The paper presents the principles of construction and the operational features of a vibration type viscosity sensor with an extended measuring range. A measuring transducer (MT) is a two-freedom degree oscillatory system consisting of a vibrator and a piezoelectric transformer (PET) interacting with each other. The vibrator here is a sensitive element (SE), while PET is used to excite mechanical vibrations in the system and generate an electrical output signal of the sensor. The paper provides the results of mathematical description and simulations of two possible modes of the sensor operations. Strongly coupled oscillations excited in the system at normal synchronization frequencies (NFS) can be used to measure low-viscosity media. The weak coupling mode at the partial synchronization frequency (PSF) enables the wide range viscosity measurement. Installation of an additional PET on the vibrator helps reduce the influence of destabilizing factors and improve the viscosity measurement accuracy due to the measurements of the amplitude ratio of coupled oscillations as the output signal.

Related Organizations
Keywords

датчик вязкости, система с двумя степенями свободы, viscosity sensor, пьезоэлектрический трансформатор, piezoelectric transformer, simulation modeling, связанные колебания, two-freedom degree system, имитационное моделирование, coupled oscillations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold