Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dr.ntu.edu.s...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.32657/10356...
Doctoral thesis . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A scalable and compact linear solver with a focus on model predictive control

Authors: Ong, Kevin Shen Hoong;

A scalable and compact linear solver with a focus on model predictive control

Abstract

Systolic Array architectures are data-flow based but designing architectures for solving specific problems can pose a challenge. In this thesis, an investigation into a scalable design for accelerating the problem of solving a dense linear system of equations using LU Decomposition is presented. A novel systolic array architecture that can be used as a building block in scientific applications is described and prototyped on a Xilinx Virtex 6 FPGA. The proposed linear solver has a throughput of approximately 1 million linear systems per second for matrices of size N = 4 and approximately 82 thousand linear systems per second for matrices of size N = 16. In comparison with similar work, the proposed design offers up to a 12x improvement in speed whilst requiring up to 50% fewer hardware resources. As a result, a linear system of size N = 64 can now be implemented on a single FPGA, whereas previous work was limited to N = 12 and resorted to complex multi-FPGA architectures to achieve the same effect. Moreover, the scalable design can be adapted to different sized problems with minimum effort. MASTER OF ENGINEERING (SCE)

Related Organizations
Keywords

DRNTU::Engineering::Computer science and engineering::Computer systems organization::Special-purpose and application-based systems, DRNTU::Engineering::Computer science and engineering::Hardware::Control structures and microprogramming, :Engineering::Computer science and engineering::Computer systems organization::Special-purpose and application-based systems [DRNTU], :Engineering::Computer science and engineering::Hardware::Control structures and microprogramming [DRNTU], DRNTU::Engineering::Computer science and engineering::Computer systems organization::Processor architectures, DRNTU::Engineering::Computer science and engineering::Hardware::Logic design, :Engineering::Computer science and engineering::Hardware::Logic design [DRNTU], 620, :Engineering::Computer science and engineering::Computer systems organization::Processor architectures [DRNTU]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze