
Ensuring secure and reliable identity verification is crucial, and biometric authentication plays a significant role in achieving this. However, relying on a single biometric trait, unimodal authentication, may have accuracy and attack vulnerability limitations. On the other hand, multimodal authentication, which combines multiple biometric traits, can enhance accuracy and security by leveraging their complementary strengths. In the literature, different biometric modalities, such as face, voice, fingerprint, and iris, have been studied and used extensively for user authentication. Our research introduces a highly effective multimodal biometric authentication system with a deep learning approach. Our study focuses on two of the most user-friendly safety mechanisms: face and voice recognition. We employ a convolutional autoencoder for face images and an LSTM autoencoder for voice data to extract features. These features are then combined through concatenation to form a joint feature representation. A Siamese network carries out the final step of user identification. We evaluated our model’s efficiency using the OMG-Emotion and RAVDESS datasets. We achieved an accuracy of 89.79% and 95% on RAVDESS and OMG-Emotion datasets, respectively. These results are obtained using a combination of face and voice modality.
TK7885-7895, Computer engineering. Computer hardware, Deep Learning, Autoen-coder, Voice Recognition, Siamese Neural Network, User Authentication, Electronic computers. Computer science, QA75.5-76.95, Fusion, Face Recognition, Multimodal Biometrics
TK7885-7895, Computer engineering. Computer hardware, Deep Learning, Autoen-coder, Voice Recognition, Siamese Neural Network, User Authentication, Electronic computers. Computer science, QA75.5-76.95, Fusion, Face Recognition, Multimodal Biometrics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
