Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Enzyme Regulation
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of B cell survival, development and function by inositol 1,4,5-trisphosphate 3-kinase B (Itpkb)

Authors: Schurmans, Stéphane; Pouillon, V.; Marechal, Y.;

Regulation of B cell survival, development and function by inositol 1,4,5-trisphosphate 3-kinase B (Itpkb)

Abstract

In mammals, Ins(1,4,5)P3, the well known calcium mobilization messenger, is phosphorylated in the cytosol at the 3-position of the inositol ring to yield Ins(1,3,4,5)P4 by Ins(1,4,5)P3 3-kinases A, B and C isoforms as well as by inositol polyphosphate multikinase (Ipmk). Studies in gene-deficient mice have revealed that these enzymes and Ins(1,3,4,5)P4, their reaction product, play essential role in multiple physiological processes, ranging from synaptic plasticity, hematopoietic cell survival, development and function, to mRNA export, transcriptional regulation and chromatin remodelling. Rather than to provide an unique and “universal” mechanism of Ins(1,3,4,5)P4 action, these studies in genetically-modified mice point for a role of this inositide in the control of calcium mobilization, of the subcellular localisation of PH domain-containing target proteins, and of higher inositol phosphate production. Mice deficient for the B isoform of inositol 1,4,5-trisphosphate 3-kinase (Itpkb) develop profound alterations in T and B cells as well as in neutrophils and mast cells. Our recent studies indicate that the 3-kinase Itpkb and Ins(1,3,4,5)P4 are important for the survival of naïve mature B cells and the control of proapoptotic Bim protein expression, rather than for the control of B cell transition from one developmental stage to another. They also suggest that Itpkb is an important component in the control of B cell anergy.

Keywords

B-Lymphocytes, Cell Survival, Phosphotransferases (Alcohol Group Acceptor) -- genetics -- metabolism, Genetics & genetic processes, Sciences bio-médicales et agricoles, Biochimie, biophysique & biologie moléculaire, cell survival, Life sciences, B-Lymphocytes -- physiology, Génétique & processus génétiques, Phosphotransferases (Alcohol Group Acceptor), Sciences du vivant, Calcium -- metabolism, Animals, Humans, Signal Transduction -- physiology, Calcium, Itpkb, inositol 1,4,5-trisphosphate 3-kinase B, Cell Survival -- physiology, Biochemistry, biophysics & molecular biology, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!