Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Generation, Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Generation, Transmission & Distribution
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An extended impedance‐based fault location algorithm in power distribution system with distributed generation using synchrophasors

Authors: Sandhya Chandran; Ramakrishna Gokaraju; Krish Narendra;

An extended impedance‐based fault location algorithm in power distribution system with distributed generation using synchrophasors

Abstract

Abstract Accurately locating power distribution faults reduces the total outage duration and provides better system reliability. Fault location using the traditional impedance‐based method may be very challenging in an active distribution system. However, taking into consideration the ease of implementation and cost effectiveness, a novel impedance‐based method is proposed to locate the fault by using the highly accurate time‐synchronized voltage and current phasors obtained from distribution phasor measurement units. The synchrophasor measurements obtained from the substation and various feeder segments are used in a two‐step algorithm based on the apparent impedance calculation to locate the exact source of the event. The algorithm uses phasor estimates to first identify the faulted feeder sub‐region and later uses measurements from a remote end device to eliminate pseudo‐faulted points to obtain the actual fault location. The effectiveness of the proposed method is realized using IEEE 34 bus system. Based on different fault types simulated at various parts of the system, the algorithm accurately estimates fault location in the range of ±1% of the line length. The proposed method is effective in locating faults for any type of network and topologies, with as many or as few (minimum 2) phasor measurement units in the system.

Related Organizations
Keywords

TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Distribution or transmission of electric power, power system protection, WAMS / WAC / PMU, TK3001-3521

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Published in a Diamond OA journal