
This paper explores the parallel complexity of finite constraint satisfaction problems (FCSPs) by developing three algorithms for deriving minimal constraint networks in parallel. The first is a parallel algorithm for the EREW PRAM model, the second is a distributed algorithm for fine-grain interconnected networks, and the third is a distributed algorithm for coarse-grain interconnected networks. Our major results are: given an FCSP represented by an acyclic constraint network (or a join tree) of size n with treewidth bounded by a constant, then (1) the parallel algorithm takes O(log n) time using O(n) processors, (2) there is an equivalent network, of size poly(n) with treewidth also bounded by a constant, which can be solved by the fine-grain distributed algorithm in O(\log n) time using poly(n) processors and (3) the distributed algorithm for coarse-grain interconnected networks has linear speedup and linear scaleup. In addition, we have simulated the fine-grain distributed algorithm based on the logical time assumption, experimented with the coarse-grain distributed algorithm on a network of transputers, and evaluated the results against the theory.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
