Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Современные информац...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Disorder Solutions for Generalized Ising Model with Multispin Interaction

Неупорядоченные решения обобщенной модели Изинга с мультиспиновым взаимодействием
Authors: Khrapov, P.V.;

Disorder Solutions for Generalized Ising Model with Multispin Interaction

Abstract

This study demonstrates a development of convenient formulae for obtaining the value of the free energy in the thermodynamic limit on a set of exact disorder solutions depending on four parameters for a 2D generalized Ising model in an external magnetic field with the interaction of nearest neighbors, next nearest neighbors, all kinds of triple interactions and the four interactions for the planar model, and for the 3D generalized Ising model in an external magnetic field with all kinds of interactions in the tetrahedron formed by four spins: at the origin of the coordinates and the closest to it along three coordinate axes in the first coordinate octant. Lattice models are considered with boundary conditions with a shift (similar to helical ones), and a cyclic closure of the set of all points (in natural ordering). For both the planar model and the 3D model, elementary transfer matrices with nonnegative matrix elements are constructed, while the free energy in the thermodynamic limit is equal to the Napierian logarithm of the maximum eigenvalue of the transfer matrix. This maximum eigenvalue can be found for a special kind of eigenvector with positive components. The region of existence of these solutions is described. The examples show the existence of nontrivial solutions of the resulting systems of equations for plane and threedimensional generalized Ising models. The system of equations and the value of free energy in the thermodynamic limit will remain the same for plane and threedimensional models with Hamiltonians, in which the value of the maximum in the natural ordering of the spin is replaced by the value of the spin at almost any other point in the lattice, this significantly expands the set of models having disordered exact solutions. The high degree of symmetry and repeatability of the components of the found eigenvectors, disappearing when we go beyond the framework of the obtained set of exact solutions, are the reason for the search for phase transitions in the vicinity of this set of disordered solutions. В работе получены формулы для нахождения свободной энергии в термодинамическом пределе на множестве точных неупорядоченных решений (disordersolutions), зависящих от четырех параметров для 2Dобобщенной модели Изинга во внешнем магнитном полесо взаимодействием ближайших соседей, следующих ближайших соседей (nextnearest), всевозможных тройных взаимодействий и взаимодействия четырех спинов для плоской модели, и для 3Dобобщенной модели Изинга во внешнем магнитном полесо всевозможными взаимодействиями в тетраэдре, образованном четырьмя спинами: в начале координат и ближайшие к нему по трем координатным осям в первом координатном октанте. Решеточные модели рассматриваютсяс граничными условиями со сдвигом (похожие на винтовые), и циклическим замыканием множества всех точек (в естественном упорядочении). В обоих случаях для плоской и 3Dмоделей построены элементарные трансферматрицы с неотрицательными матричными элементами, при этом свободная энергия в термодинамическом пределе равна натуральному логарифму максимального собственного значения трансферматрицы. Это максимальное собственное значение удается найти для специального вида собственного вектора с положительными компонентами. Описана область существования этих решений.На примерах показано существование нетривиальных решений получающихся систем уравнений для плоских и трехмерных обобщенных моделей Изинга. Система уравнений и значение свободной энергиив термодинамическом пределе останутся прежними для плоских и трехмерных моделей с гамильтонианами, в которых значение максимального в естественном упорядочении спина заменено значением спина практически в любой другой точке решетки, это значительно расширяет множество моделей, имеющих неупорядоченные точные решения.Высокая симметрия и повторяемость компонент найденных собственных векторов, исчезающая при выходе за рамки полученного множества точных решений, является поводом для поиска фазовых переходов в окрестности этого множества неупорядоченных решений.

Related Organizations
Keywords

partition function, мультиспиновое взаимодействие, неупорядоченные решения, hamiltonian, generalized ising model, QA75.5-76.95, multispin interaction, собственный вектор, free energy, трансфер-матрица, свободная энергия, Hamiltonian, generalized Ising model, eigenvector, disorder solutions, Electronic computers. Computer science, обобщенная модель Изинга, eigenvalue, transfer matrix, гамильтониан, статистическая сумма, собственное значение

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold