Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Sains Nalar d...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Sains Nalar dan Aplikasi Teknologi Informasi
Article . 2025 . Peer-reviewed
License: CC BY SA
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Penerapan Algoritma K-Nearest Neighbors untuk Deteksi Serangan Network Flood Berbasis Supervised Learning

Authors: habibi, roni; Widana, Naufal Dekha;

Penerapan Algoritma K-Nearest Neighbors untuk Deteksi Serangan Network Flood Berbasis Supervised Learning

Abstract

Deteksi anomali akibat serangan flood merupakan tantangan utama dalam pengelolaan keamanan jaringan modern. Penelitian ini mengusulkan penerapan algoritma K-Nearest Neighbors (KNN) dalam kerangka supervised learning untuk membangun model Network Flood Detection (NFD) yang dievaluasi menggunakan metrik performa yang lebih komprehensif, yaitu akurasi, presisi, dan recall. Model dikembangkan berdasarkan fitur jaringan seperti bandwidth masuk, bandwidth keluar, ping, serta distribusi trafik flood dan normal. Data diperoleh dari laporan jaringan instansi secara real-time dan historis, yang kemudian diproses melalui tahapan normalisasi, pengurangan fitur, dan penghapusan noise. Hasil evaluasi menunjukkan bahwa model mampu mencapai akurasi hingga 92,42% dengan skor F1 yang seimbang antar kelas. Selain itu, kurva ROC dengan AUC sebesar 0,99 menunjukkan bahwa model memiliki kemampuan diskriminasi yang tinggi dalam membedakan trafik flood dan normal. Temuan ini menunjukkan bahwa KNN, meskipun sederhana, dapat digunakan secara efektif dalam sistem deteksi serangan flood jika didukung oleh data yang representatif dan proses evaluasi yang tepat.

Related Organizations
Keywords

KNN, Network Flood, Deteksi Anomali, Supervised Learning, Keamanan Jaringan

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold