
Second-order cone programming problems are a tractable subclass of convex optimization problems that can be solved using polynomial algorithms. In the last decade, stochastic second-order cone programming problems have been studied, and efficient algorithms for solving them have been developed. The mixed-integer version of these problems is a new class of interest to the optimization community and practitioners, in which certain variables are required to be integers. In this paper, we describe five applications that lead to stochastic mixed-integer second-order cone programming problems. Additionally, we present solution algorithms for solving stochastic mixed-integer second-order cone programming using cuts and relaxations by combining existing algorithms for stochastic second-order cone programming with extensions of mixed-integer second-order cone programming. The applications, which are the focus of this paper, include facility location, portfolio optimization, uncapacitated inventory, battery swapping stations, and berth allocation planning. Considering the fact that mixed-integer programs are usually known to be NP-hard, bringing applications to the surface can detect tractable special cases and inspire for further algorithmic improvements in the future.
Second-order cone programming, stochastic programming, mixed-integer programming, applications, Electrical engineering. Electronics. Nuclear engineering, algorithms, TK1-9971
Second-order cone programming, stochastic programming, mixed-integer programming, applications, Electrical engineering. Electronics. Nuclear engineering, algorithms, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
