
Community detection is a key aspect for understanding network structures and uncovers the underlying functions or characteristics of complex systems. A community usually refers to a set of nodes that are densely connected among themselves, but sparsely connected to the remaining nodes of the network. Detecting communities has been proved to be a NP-hard problem. Therefore, evolutionary based optimization approaches can be used to solve it. But a primary challenge for them is the higher computational complexity when dealing with large scale networks. In this respect, a COMpression based Multi-Objective Evolutionary Algorithm with Decomposition (Com-MOEA/D) for community detection is proposed where the network is first compressed to a much more smaller scale by exploring network topologies. After that, a framework of multi-objective evolutionary algorithm based on decomposition is applied, in which a local information based genetic operator is proposed to speed up the convergence and improve the accuracy of the Com-MOEA/D algorithm. Experimental results on both real world and synthetic networks show the superiority of the proposed method over several state-of-the-art community detection algorithms.
social networks, Network compression, multi-objective optimization, community detection, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
social networks, Network compression, multi-objective optimization, community detection, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
