Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/embc48...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Obstacle Segmentation with Encoder-Decoder Architectures in Low Structured Environments for the Navigation of Visually Impaired People

Authors: Julian, Sessner; Fabian, Schade; Jorg, Franke;

Obstacle Segmentation with Encoder-Decoder Architectures in Low Structured Environments for the Navigation of Visually Impaired People

Abstract

Orientation and mobility of visually impaired people usually requires intensive training with mobility aids (e.g. white canes). Assistance systems capture information from the environment, process sensor data and provide the results to the impaired user. The paper presents an approach for efficient segmentation of obstacles in low-structured outdoor environments using encoder-decoder deep learning architectures and depth images. Therefore, an efficient method for generating training data using the v-disparity method is presented. Based on an extensive dataset of RGB and depth images and the corresponding binary label images, different state-of-the-art encoder-decoder architectures are evaluated on a mobile computing unit with respect to accuracy and efficiency. Besides pure depth-based architectures, RGB-D fused architectures are evaluated, too. The quantitative results show some limitations, but an additional qualitative evaluation proves the applicability of the approach to support the navigation of VIP by mapping the position of surrounding obstacles. Thus, an efficient combination of classical image processing, the integration of knowledge about the physical nature of the environment and deep learning can be made. Clinical Relevance- The approach supports the navigation of visually impaired people, which enables a more self-sufficient life related to higher quality of life.

Related Organizations
Keywords

Image Processing, Computer-Assisted, Quality of Life, Persons with Visual Disabilities, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!