
doi: 10.3390/math13132190
This paper presents a distributed optimization algorithm for time-varying objective functions utilizing a prescribed-time convergent multi-agent system within undirected communication networks. Departing from conventional time-invariant optimization paradigms with static optimal solutions, our approach specifically addresses the challenge of tracking dynamic optimal trajectories in evolving environments. A novel continuous-time distributed optimization algorithm is developed based on prescribed-time consensus, guaranteeing the consensus attainment among agents within a user-defined timeframe while asymptotically converging to the time-dependent optimal solution. The proposed methodology enables explicit predetermination of convergence duration, representing a significant advancement over existing asymptotic convergence methods. Moreover, two simulation examples on the rendezvous problem and multi-robots control are presented to validate the theoretical results, exhibiting precise time-controlled convergence characteristics and effective tracking performance for time-varying optimization targets.
multiagent system, time-varying function, QA1-939, distributed optimization, Mathematics, prescribed-time consensus
multiagent system, time-varying function, QA1-939, distributed optimization, Mathematics, prescribed-time consensus
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
