
doi: 10.1002/eng2.70028
ABSTRACTModern power systems are increasingly challenged by frequency stability issues due to dynamic load variations and the growing complexity of interconnected networks. Traditional PID controllers, while widely utilized, struggle to address the rapid fluctuations and uncertainties inherent in contemporary multi‐area interconnected power systems (MAIPS). This paper introduces an innovative approach to Load Frequency Control (LFC) using a Fractional‐Order PID (FOPID) controller, optimized by a Neural Network Algorithm (NNA). The proposed NNA‐FOPID framework leverages the biological principles of neural networks to dynamically tune controller parameters, significantly enhancing system performance. The solution is tested under various scenarios involving step load changes across multi‐area systems. The proposed method demonstrates marked improvements over traditional PID controllers and advanced optimization techniques such as Differential Evolution (DE) and Artificial Rabbits Algorithm (ARA). The comparisons show that the FOPID controller's NNA‐based design effectively and successfully handles LFC in MAIPSs for ITAE minimizations, and statistical evaluation supports its superiority.
Electronic computers. Computer science, grid stability, neural network algorithm, optimization techniques, QA75.5-76.95, TA1-2040, Engineering (General). Civil engineering (General), fractional‐order PID controller, multi‐area power systems
Electronic computers. Computer science, grid stability, neural network algorithm, optimization techniques, QA75.5-76.95, TA1-2040, Engineering (General). Civil engineering (General), fractional‐order PID controller, multi‐area power systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
