
arXiv: 2307.14942
Decentralized optimization is typically studied under the assumption of noise-free transmission. However, real-world scenarios often involve the presence of noise due to factors such as additive white Gaussian noise channels or probabilistic quantization of transmitted data. These sources of noise have the potential to degrade the performance of decentralized optimization algorithms if not effectively addressed. In this paper, we focus on the noisy communication setting and propose an algorithm that bridges the performance gap caused by communication noise while also mitigating other challenges like data heterogeneity. We establish theoretical results of the proposed algorithm that quantify the effect of communication noise and gradient noise on the performance of the algorithm. Notably, our algorithm achieves the optimal convergence rate for minimizing strongly convex, smooth functions in the context of inexact communication and stochastic gradients. Finally, we illustrate the superior performance of the proposed algorithm compared to its state-of-the-art counterparts on machine learning problems using MNIST and CIFAR-10 datasets.
34 pages, 4 figures
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
