
doi: 10.3390/sym13061094
Forward error correction codes (FEC) are one of the vital sections of modern communication systems; therefore, recognition of the coding type is an important issue in non-cooperative communication. At present, the recognition of FEC codes is mainly concentrated in the field of semi-blind identification with known types of codes. However, based on information asymmetry, the receiver cannot know the types of channel coding previously used in non-cooperative systems such as cognitive radio and remote sensing of communication. Therefore, it is important to recognize the error-correcting encoding type with no prior information. Although the traditional algorithm can also recognize the type of codes, it is only applicable to the case without errors, and its practicability is poor. In the paper, we propose a new method to identify the types of FEC codes based on depth distribution in non-cooperative communication. The proposed algorithm can effectively recognize linear block codes, convolutional codes, and Turbo codes under a low error probability level, and has a higher robustness to noise transmission environment. In addition, an improved matrix estimation algorithm based on Gaussian elimination was adopted in this paper, which effectively improves the parameter identification in a noisy environment. Finally, we used a general framework to unify all the reconstruction algorithms to simplify the complexity of the algorithm. The simulation results show that, compared with the traditional algorithm based on matrix rank, the proposed algorithm has a better anti-interference performance. The method proposed is simple and convenient for engineering and practical applications.
code type reconstruction, non-cooperative system, matrix estimation algorithm, depth distribution algorithm, blind recognition, forward error correction codes
code type reconstruction, non-cooperative system, matrix estimation algorithm, depth distribution algorithm, blind recognition, forward error correction codes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
