Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Lo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A probabilistic framework for product health monitoring in multistage manufacturing using Unsupervised Artificial Neural Networks and Gaussian Processes

Authors: Papananias, M.; McLeay, T.E.; Mahfouf, M.; Kadirkamanathan, V.;

A probabilistic framework for product health monitoring in multistage manufacturing using Unsupervised Artificial Neural Networks and Gaussian Processes

Abstract

The emergence of highly instrumented manufacturing systems has enabled the paradigm of smart manufacturing that provides high levels of prognostics functionality. Of particular interest is to precisely determine geometric conformance or non-conformance of workpieces during manufacturing. This paper presents a new dimensional product health monitoring system that learns from in-process sensor data and updates the prediction of the product quality as the product is manufactured. The system uses data from multiple manufacturing stages, unlike from a single stage at a time, to predict the dimensional quality of the finished product that is updated with subsequent measurements such as On-Machine Measurements (OMMs), in on-line incremental learning fashion. It is based on self-supervised neural networks for dimensionality reduction, Gaussian Process Regression (GPR) models for probabilistic prediction about the end product condition and the associated uncertainty, and Bayesian information fusion for updating the conditional probability distribution of the end product quality in the light of new information. The monitoring approach was tested on the prediction of diameter deviations with validation results showing its ability to achieve an average accuracy better than 5 μm in terms of the Root Mean Squared Error (RMSE). Having obtained a Probability Density Function (PDF) for the measurand of interest, the conformance and non-conformance probabilities given the tolerance specifications are computed to support the principle of inspection by exception. This ability to construct a conformance probability-based product quality monitoring system using probabilistic machine learning methods constitute a step change to manufacturing prognostics.

Keywords

conformity probability estimation, Multistage Manufacturing Process (MMP), Gaussian Process Regression (GPR), 600, multistage manufacturing process (MMP), 620, process monitoring, gaussian process regression (GPR), Unsupervised Artificial Neural Networks (ANNs), Process monitoring, unsupervised artificial neural networks (ANNs)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid