
Many clustering and layout techniques have been used for structuring and visualising complex data. This paper is inspired by a number of such contemporary techniques and presents a novel hybrid approach based upon stochastic sampling, interpolation and spring models. We use Chalmers' 1996 O(N/sup 2/) spring model as a benchmark when evaluating our technique, comparing layout quality and run times using data sets of synthetic and real data. Our algorithm runs in O(N/spl radic/N) and executes significantly faster than Chalmers' 1996 algorithm, whilst producing superior layouts. In reducing complexity and run time, we allow the visualisation of data sets of previously infeasible size. Our results indicate that our method is a solid foundation for interactive and visual exploration of data.
QA75
QA75
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
