Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
https://dx.doi.org/10.60692/0x...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/yh...
Other literature type . 2021
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Robust Adaptive Beamforming Based on Low-Complexity Discrete Fourier Transform Spatial Sampling

شعاع تكيفي قوي يعتمد على أخذ العينات المكانية لتحويل فورييه المنفصل منخفض التعقيد
Authors: Saeed Mohammadzadeh; Vítor H. Nascimento; Rodrigo C. de Lamare; Osman Kukrer;

Robust Adaptive Beamforming Based on Low-Complexity Discrete Fourier Transform Spatial Sampling

Abstract

Dans cet article, un nouvel algorithme robuste est proposé pour la formation de faisceaux adaptative basée sur l'idée de reconstruire la séquence d'autocorrélation (ACS) d'un processus aléatoire à partir d'un ensemble de données mesurées. Ceci est obtenu à partir de la première colonne et de la première ligne de la matrice de covariance d'échantillon (SCM) après avoir fait la moyenne le long de ses diagonales. Ensuite, le spectre de puissance de la séquence de corrélation est estimé à l'aide de la transformée de Fourier discrète (DFT). Les coefficients DFT correspondant aux angles dans la région de bruit plus interférence sont utilisés pour reconstruire la matrice de covariance bruit plus interférence (NPICM), tandis que la matrice de covariance signal souhaitée (DSCM) est estimée en identifiant et en supprimant la composante bruit plus interférence du SCM.En particulier, le spectre de puissance spatiale du signal reçu estimé est utilisé pour calculer la séquence de corrélation correspondant au bruit plus interférence dans lequel le coefficient DFT dominant du bruit plus interférence est capturé.Un avantage clé de la formation de faisceau adaptative proposée est que peu d'informations préalables sont nécessaires.En particulier, une connaissance imprécise de la géométrie du réseau et des secteurs angulaires dans lesquels les interférences sont capturées sont localisés est nécessaire. Les résultats de la simulation démontrent que, par rapport aux formateurs de faisceaux basés sur la reconstruction précédents, l'approche proposée peut atteindre une meilleure performance globale dans le cas de multiples mésappariements sur une très large gamme de rapports signal sur bruit d'entrée.

En este documento, se propone un algoritmo novedoso y robusto para la formación de haces adaptativa basado en la idea de reconstruir la secuencia de autocorrelación (ACS) de un proceso aleatorio a partir de un conjunto de datos medidos. Esto se obtiene de la primera columna y la primera fila de la matriz de covarianza de la muestra (SCM) después de promediar a lo largo de sus diagonales. Luego, el espectro de potencia de la secuencia de correlación se estima utilizando la transformada discreta de Fourier (DFT). Los coeficientes DFT correspondientes a los ángulos dentro de la región de ruido más interferencia se utilizan para reconstruir la matriz de covarianza de ruido más interferencia (NPICM), mientras que la matriz de covarianza de señal deseada (DSCM) se estima identificando y eliminando el componente de ruido más interferencia del SCM. En particular, el espectro de potencia espacial de la señal recibida estimada se utiliza para calcular la secuencia de correlación correspondiente al ruido más interferencia en la que se captura el coeficiente DFT dominante del ruido más interferencia. Una ventaja clave de la formación de haz adaptativa propuesta es que solo se requiere poca información previa. Específicamente, un conocimiento impreciso de la geometría de la matriz y de los sectores angulares en los que se capturan las interferencias se necesitan. Los resultados de la simulación demuestran que, en comparación con los conformadores de haz basados en reconstrucción anteriores, el enfoque propuesto puede lograr un mejor rendimiento general en el caso de múltiples desajustes en un rango muy amplio de relaciones señal/ruido de entrada.

In this paper, a novel and robust algorithm is proposed for adaptive beamforming based on the idea of reconstructing the autocorrelation sequence (ACS) of a random process from a set of measured data.This is obtained from the first column and the first row of the sample covariance matrix (SCM) after averaging along its diagonals.Then, the power spectrum of the correlation sequence is estimated using the discrete Fourier transform (DFT).The DFT coefficients corresponding to the angles within the noise-plusinterference region are used to reconstruct the noise-plus-interference covariance matrix (NPICM), while the desired signal covariance matrix (DSCM) is estimated by identifying and removing the noise-plusinterference component from the SCM.In particular, the spatial power spectrum of the estimated received signal is utilized to compute the correlation sequence corresponding to the noise-plus-interference in which the dominant DFT coefficient of the noise-plus-interference is captured.A key advantage of the proposed adaptive beamforming is that only little prior information is required.Specifically, an imprecise knowledge of the array geometry and of the angular sectors in which the interferences are located is needed.Simulation results demonstrate that compared with previous reconstruction-based beamformers, the proposed approach can achieve better overall performance in the case of multiple mismatches over a very large range of input signal-to-noise ratios.

في هذه الورقة، يتم اقتراح خوارزمية جديدة وقوية لتشكيل الحزم التكيفية بناءً على فكرة إعادة بناء تسلسل الارتباط الذاتي (ACS) لعملية عشوائية من مجموعة من البيانات المقاسة. يتم الحصول على ذلك من العمود الأول والصف الأول من مصفوفة التباين للعينة (SCM) بعد حساب المتوسط على طول قطرها. ثم يتم تقدير طيف القدرة لتسلسل الارتباط باستخدام تحويل فورييه المنفصل (DFT). يتم استخدام معاملات DFT المقابلة للزوايا داخل منطقة الضوضاء والتداخل الزائد إعادة بناء مصفوفة تباين الضوضاء والتداخل (NPICM)، في حين يتم تقدير مصفوفة تباين الإشارة المطلوبة (DSCM) من خلال تحديد وإزالة مكون تداخل الضوضاء والتداخل من SCM. على وجه الخصوص، يتم استخدام طيف الطاقة المكاني للإشارة المستقبلة المقدرة لحساب تسلسل الارتباط المقابل للتداخل بين الضوضاء والتداخل الذي يتم فيه التقاط معامل DFT السائد للتداخل بين الضوضاء والتداخل. الميزة الرئيسية لتشكيل الحزمة التكيفية المقترحة هي أنه لا يلزم سوى القليل من المعلومات المسبقة. على وجه التحديد، معرفة غير دقيقة بهندسة المصفوفة والقطاعات الزاوية التي يتم فيها التقاط التداخلات هناك حاجة إلى ذلك. توضح نتائج المحاكاة أنه مقارنةً بمشكلات الحزم السابقة القائمة على إعادة الإعمار، يمكن للنهج المقترح تحقيق أداء عام أفضل في حالة عدم التطابق المتعدد على نطاق كبير جدًا من نسب إشارة الدخل إلى الضوضاء.

Keywords

Artificial intelligence, Covariance matrix, Noise (video), Interference (communication), Mathematical analysis, Wireless Indoor Localization Techniques and Systems, Engineering, Beamforming, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Image (mathematics), Adaptive beamformer, Electrical and Electronic Engineering, covariance matrix reconstruction, Speech Enhancement Techniques, Autocorrelation sequence, Discrete Fourier transform (general), spatial sampling, discrete Fourier transform, Statistics, Computer science, Sparse Sensing, Fourier analysis, TK1-9971, Algorithm, Robust Adaptive Beamforming, Channel (broadcasting), Autocorrelation, Signal Processing, Computer Science, Physical Sciences, Fourier transform, Short-time Fourier transform, Telecommunications, Electrical engineering. Electronics. Nuclear engineering, Mathematics, Array Processing for Signal Localization and Estimation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold