Downloads provided by UsageCounts
This contribution presents a deep learning method for the segmentation of prostate zones in MRI images based on U-Net using additive and feature pyramid attention modules, which can improve the workflow of prostate cancer detection and diagnosis. The proposed model is compared to seven different U-Net-based architectures. The automatic segmentation performance of each model of the central zone (CZ), peripheral zone (PZ), transition zone (TZ) and Tumor were evaluated using Dice Score (DSC), and the Intersection over Union (IoU) metrics. The proposed alternative achieved a mean DSC of 84.15% and IoU of 76.9% in the test set, outperforming most of the studied models in this work except from R2U-Net and attention R2U-Net architectures.
This paper has been accepted at the 22nd Mexican International Conference on Artificial Intelligence (MICAI 2023)
Pròstata -- Càncer, FOS: Computer and information sciences, Image segmentation, Prostate cancer, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial, Computer Science - Computer Vision and Pattern Recognition, Deep learning, Electrical Engineering and Systems Science - Image and Video Processing, U-Net, Imatges -- Segmentació, Segmentation, Àrees temàtiques de la UPC::Ciències de la salut::Medicina, FOS: Electrical engineering, electronic engineering, information engineering, Prostate -- Cancer, Attention, Intel·ligència artificial -- Aplicacions a la medicina, Uncertainty quantification, Artificial intelligence -- Medical applications, Aprenentatge profund
Pròstata -- Càncer, FOS: Computer and information sciences, Image segmentation, Prostate cancer, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial, Computer Science - Computer Vision and Pattern Recognition, Deep learning, Electrical Engineering and Systems Science - Image and Video Processing, U-Net, Imatges -- Segmentació, Segmentation, Àrees temàtiques de la UPC::Ciències de la salut::Medicina, FOS: Electrical engineering, electronic engineering, information engineering, Prostate -- Cancer, Attention, Intel·ligència artificial -- Aplicacions a la medicina, Uncertainty quantification, Artificial intelligence -- Medical applications, Aprenentatge profund
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 65 | |
| downloads | 17 |

Views provided by UsageCounts
Downloads provided by UsageCounts