Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning in Herding Mean Field Games: Single-Loop Algorithm with Finite-Time Convergence Analysis

Authors: Zeng, Sihan; Bhatt, Sujay; Koppel, Alec; Ganesh, Sumitra;

Learning in Herding Mean Field Games: Single-Loop Algorithm with Finite-Time Convergence Analysis

Abstract

We consider discrete-time stationary mean field games (MFG) with unknown dynamics and design algorithms for finding the equilibrium with finite-time complexity guarantees. Prior solutions to the problem assume either the contraction of a mean field optimality-consistency operator or strict weak monotonicity, which may be overly restrictive. In this work, we introduce a new class of solvable MFGs, named the "fully herding class", which expands the known solvable class of MFGs and for the first time includes problems with multiple equilibria. We propose a direct policy optimization method, Accelerated Single-loop Actor Critic Algorithm for Mean Field Games (ASAC-MFG), that provably finds a global equilibrium for MFGs within this class, under suitable access to a single trajectory of Markovian samples. Different from the prior methods, ASAC-MFG is single-loop and single-sample-path. We establish the finite-time and finite-sample convergence of ASAC-MFG to a mean field equilibrium via new techniques that we develop for multi-time-scale stochastic approximation. We support the theoretical results with illustrative numerical simulations. When the mean field does not affect the transition and reward, a MFG reduces to a Markov decision process (MDP) and ASAC-MFG becomes an actor-critic algorithm for finding the optimal policy in average-reward MDPs, with a sample complexity matching the state-of-the-art. Previous works derive the complexity assuming a contraction on the Bellman operator, which is invalid for average-reward MDPs. We match the rate while removing the untenable assumption through an improved Lyapunov function.

Keywords

Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green