
We develop efficient parameterized, with additive error, approximation algorithms for the (Connected) $r$-Domination problem and the (Connected) $p$-Center problem for unweighted and undirected graphs. Given a graph $G$, we show how to construct a (connected) $\big(r + \mathcal{O}(��) \big)$-dominating set $D$ with $|D| \leq |D^*|$ efficiently. Here, $D^*$ is a minimum (connected) $r$-dominating set of $G$ and $��$ is our graph parameter, which is the tree-breadth or the cluster diameter in a layering partition of $G$. Additionally, we show that a $+ \mathcal{O}(��)$-approximation for the (Connected) $p$-Center problem on $G$ can be computed in polynomial time. Our interest in these parameters stems from the fact that in many real-world networks, including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others, and in many structured classes of graphs these parameters are small constants.
graph algorithms, FOS: Computer and information sciences, connected \(r\)-domination, Applications of graph theory, Tree-breadth, Layering partition, Graph algorithms (graph-theoretic aspects), Computer Science - Data Structures and Algorithms, Deterministic network models in operations research, Connected r-domination, tree-breadth, Data Structures and Algorithms (cs.DS), Graph algorithms, connected \(p\)-center, layering partition, Computer Sciences, Theory and Algorithms, tree-length, Connected p-center, Approximation algorithms, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Small world graphs, complex networks (graph-theoretic aspects), Tree-length
graph algorithms, FOS: Computer and information sciences, connected \(r\)-domination, Applications of graph theory, Tree-breadth, Layering partition, Graph algorithms (graph-theoretic aspects), Computer Science - Data Structures and Algorithms, Deterministic network models in operations research, Connected r-domination, tree-breadth, Data Structures and Algorithms (cs.DS), Graph algorithms, connected \(p\)-center, layering partition, Computer Sciences, Theory and Algorithms, tree-length, Connected p-center, Approximation algorithms, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Small world graphs, complex networks (graph-theoretic aspects), Tree-length
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
