Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Polynomial-Time Inner Approximation Algorithm for Multi-Objective Optimization

Authors: Nemesch, Levin; Ruzika, Stefan; Thielen, Clemens; Wittmann, Alina;

A Polynomial-Time Inner Approximation Algorithm for Multi-Objective Optimization

Abstract

In multi-objective optimization, the problem of finding all non-dominated images is often intractable. However, for any multiplicative factor greater than one, an approximation set can be constructed in polynomial time for many problems. In this paper, we use the concept of convex approximation sets: Each non-dominated image is approximated by a convex combination of images of solutions in such a set. Recently, Helfrich et al. (2024) presented a convex approximation algorithm that works in an adaptive fashion and outperforms all previously existing algorithms. We use a different approach for constructing an even more efficient adaptive algorithm for computing convex approximation sets. Our algorithm is based on the skeleton algorithm for polyhedral inner approximation by Csirmaz (2021). If the weighted sum scalarization can be solved exactly or approximately in polynomial time, our algorithm can find a convex approximation set for an approximation factor arbitrarily close to this solution quality. We demonstrate that our new algorithm significantly outperforms the current state-of-the-art algorithm from Helfrich et al. (2024) on instances of the multi-objective variants of the assignment problem, the knapsack problem, and the symmetric metric travelling salesman problem.

Keywords

Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green