
Single-molecule magnets (SMMs) based on dysprosocenium cations, [Dy(CpR)2]+ (CpR = substituted cyclopentadienyl), have set record effective energy barriers to magnetic reversal (Ueff) and temperatures at which open magnetic hysteresis is observed (TH), due to their highly axial crystal fields (CFs) and rigid ligand frameworks. Dysprosium bis(amide) cations, [Dy(NR2)]+ (R = bulky silyl, aryl), can potentially show superior SMM properties as more charge-dense N-donor atoms can enforce stronger axial CFs to increase Ueff, but these more flexible ligands can also promote under-barrier magnetic relaxation processes that diminish TH. Here we combine the favorable SMM properties of each ligand in a single complex, [Dy{N(SiiPr3)2}(Cp*)][Al{OC(CF3)3}4] (1-Dy; Cp* = C5Me5). We find that 1-Dy has large magnetic anisotropy, with Ueff = 2191(33) K; this is comparable with the best-performing dysprosium CpR-based SMMs, but lower than the dysprosium bis(amide)-alkene complex [Dy{N(SiiPr3)[Si(iPr)2C(CH3)=CHCH3]}{N(SiiPr3)(SiiPr2Et)}][Al{OC(CF3)3}4] (Ueff = 2652(16) K). A combination of the bent N–Dy–Cp*cent angle (ca. 152.5(2)°) and flexible amide substituents of 1-Dy limits TH to 73 K, which is below the record TH value of 100 K for the bis(amide)-alkene. Together, this work shows that dysprosium SMMs containing one π-aromatic and one monodentate ligand can have comparable Ueff values to bis-π-aromatic complexes, but in common with dysprosium bis(amide) complexes they show a greater sensitivity of inter-ligand angle towards under-barrier relaxation processes. This new class of dysprosium complexes are promising candidates for high-temperature SMMs, and it is likely that large improvements on this first example can be made with exquisite control of molecular geometry.
lanthanide, single-molecule magnet, cyclopentadienyl, dysprosium, amide
lanthanide, single-molecule magnet, cyclopentadienyl, dysprosium, amide
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
