
This paper proposes a distributed stochastic algorithm with variance reduction for general smooth non-convex finite-sum optimization, which has wide applications in signal processing and machine learning communities. In distributed setting, large number of samples are allocated to multiple agents in the network. Each agent computes local stochastic gradient and communicates with its neighbors to seek for the global optimum. In this paper, we develop a modified variance reduction technique to deal with the variance introduced by stochastic gradients. Combining gradient tracking and variance reduction techniques, this paper proposes a distributed stochastic algorithm, GT-VR, to solve large-scale non-convex finite-sum optimization over multi-agent networks. A complete and rigorous proof shows that the GT-VR algorithm converges to first-order stationary points with $O(\frac{1}{k})$ convergence rate. In addition, we provide the complexity analysis of the proposed algorithm. Compared with some existing first-order methods, the proposed algorithm has a lower $\mathcal{O}(PM��^{-1})$ gradient complexity under some mild condition. By comparing state-of-the-art algorithms and GT-VR in experimental simulations, we verify the efficiency of the proposed algorithm.
11pages
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Optimization and Control (math.OC), FOS: Mathematics, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematics - Optimization and Control
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Optimization and Control (math.OC), FOS: Mathematics, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
