
By combining the coupling identification concept with the gradient search, this study develops a partially coupled generalised extended projection algorithm and a partially coupled generalised extended stochastic gradient algorithm to estimate the parameters of a multivariable output‐error‐like system with autoregressive moving average noise from input–output data. The key is to divide the identification model into several submodels based on the hierarchical identification principle and to establish the parameter estimation algorithm by using the coupled relationship between these submodels. The simulation test results indicate that the proposed algorithms are effective.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 172 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
