Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aaltodoc Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2022 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2022 . Peer-reviewed
Data sources: Research.fi
https://doi.org/10.21437/inter...
Article . 2022 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convolutional Neural Networks for Classification of Voice Qualities from Speech and Neck Surface Accelerometer Signals

Authors: Javanmardi Farhad; Alku Paavo; Kadiri Sudarsana;

Convolutional Neural Networks for Classification of Voice Qualities from Speech and Neck Surface Accelerometer Signals

Abstract

Prior studies in the automatic classification of voice quality have mainly studied support vector machine (SVM) classifiers using the acoustic speech signal as input. Recently, one voice quality classification study was published using neck surface accelerometer (NSA) and speech signals as inputs and using SVMs with hand-crafted glottal source features. The present study examines simultaneously recorded NSA and speech signals in the classification of three voice qualities (breathy, modal, and pressed) using convolutional neural networks (CNNs) as classifier. The study has two goals: (1) to investigate which of the two signals (NSA vs. speech) is more useful in the classification task, and (2) to compare whether deep learning -based CNN classifiers with spectrogram and mel-spectrogram features are able to improve the classification accuracy compared to SVM classifiers using hand-crafted glottal source features. The results indicated that the NSA signal showed better classification of the voice qualities compared to the speech signal, and that the CNN classifier outperformed the SVM classifiers with large margins. The best mean classification accuracy was achieved with mel-spectrogram as input to the CNN classifier (93.8% for NSA and 90.6% for speech).

This work was supported by the Academy of Finland (grant number 313390). The computational resources were provided by Aalto ScienceIT.

Peer reviewed

Country
Finland
Related Organizations
Keywords

computational paralinguistics, neck surface accelerometer, Melspectrogram, CNNs, Voice quality

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green