Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discrete Applied Mathematics
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A linear-time algorithm for semitotal domination in strongly chordal graphs

Authors: Tripathi, Vikash; Pandey, Arti; Maheshwari, Anil;

A linear-time algorithm for semitotal domination in strongly chordal graphs

Abstract

In a graph $G=(V,E)$ with no isolated vertex, a dominating set $D \subseteq V$, is called a semitotal dominating set if for every vertex $u \in D$ there is another vertex $v \in D$, such that distance between $u$ and $v$ is at most two in $G$. Given a graph $G=(V,E)$ without isolated vertices, the Minimum Semitotal Domination problem is to find a minimum cardinality semitotal dominating set of $G$. The semitotal domination number, denoted by $��_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of $G$. The decision version of the problem remains NP-complete even when restricted to chordal graphs, chordal bipartite graphs, and planar graphs. Galby et al. in [6] proved that the problem can be solved in polynomial time for bounded MIM-width graphs which includes many well known graph classes, but left the complexity of the problem in strongly chordal graphs unresolved. Henning and Pandey in [20] also asked to resolve the complexity status of the problem in strongly chordal graphs. In this paper, we resolve the complexity of the problem in strongly chordal graphs by designing a linear-time algorithm for the problem.

Keywords

FOS: Computer and information sciences, Discrete Mathematics (cs.DM), semitotal domination, polynomial-time algorithm, strongly chordal graphs, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Graph algorithms (graph-theoretic aspects), FOS: Mathematics, Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.), total domination, Mathematics - Combinatorics, Combinatorics (math.CO), Nonnumerical algorithms, Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green