Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronics and Cont...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electronics and Control Systems
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BAFUNet: Hybrid U-Net for Segmentation of Spine MR Images

Authors: Victor Sineglazov; Olena Chumachenko; Oleksandr Pokhylenko;

BAFUNet: Hybrid U-Net for Segmentation of Spine MR Images

Abstract

The paper presents the development of a hybrid neural network architecture, BAFUNet, designed for the segmentation of spine MR images in the context of medical diagnostics. The architecture builds upon the classical U-Net, integrating atrous spatial pyramid pooling module in the bottleneck and a two-round fusion module in the skip connections to address challenges such as various object scales and unclear boundaries in medical images. The work describes the design of the proposed BAFUNet architecture, its implementation, and the experimental results. A comparative analysis was performed against classical U-Net and ResUNet++, demonstrating the relationship between the proposed architectural enhancements and segmentation performance. The evaluation was carried out using Dice score and Jaccard score metrics on the SPIDER dataset, a publicly available lumbar spine magnetic resonance imaging dataset. The results indicate that the BAFUNet architecture achieves a slight but consistent improvement in segmentation performance, with an average Dice Score increase of 0.003–0.005 compared to baseline models, highlighting its potential applicability in automated medical diagnostics.

Related Organizations
Keywords

МРТ хребта, згорткова нейронна мережа, сегментація зображень, convolutional neural network, hybrid neural network architecture, spine MRI, гібридна архітектура нейронної мережі, U-Net, image segmentation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold