
arXiv: 2407.04282
In this paper, we study the outerplanarity of planar graphs, i.e., the number of times that we must (in a planar embedding that we can initially freely choose) remove the outerface vertices until the graph is empty. It is well-known that there are $n$-vertex graphs with outerplanarity $\tfrac{n}{6}+Θ(1)$, and not difficult to show that the outerplanarity can never be bigger. We give here improved bounds of the form $\tfrac{n}{2g}+2g+O(1)$, where $g$ is the fence-girth, i.e., the length of the shortest cycle with vertices on both sides. This parameter $g$ is at least the connectivity of the graph, and often bigger; for example, our results imply that planar bipartite graphs have outerplanarity $\tfrac{n}{8}+O(1)$. We also show that the outerplanarity of a planar graph $G$ is at most $\tfrac{1}{2}$diam$(G)+O(\sqrt{n})$, where diam$(G)$ is the diameter of the graph. All our bounds are tight up to smaller-order terms, and a planar embedding that achieves the outerplanarity bound can be found in linear time.
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), F.2, Computer Science - Data Structures and Algorithms, G.2, F.2; G.2, Data Structures and Algorithms (cs.DS), 05C85, Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), F.2, Computer Science - Data Structures and Algorithms, G.2, F.2; G.2, Data Structures and Algorithms (cs.DS), 05C85, Computer Science - Discrete Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
