Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved Outerplanarity Bounds for Planar Graphs

Authors: Therese Biedl; Debajyoti Mondal;

Improved Outerplanarity Bounds for Planar Graphs

Abstract

In this paper, we study the outerplanarity of planar graphs, i.e., the number of times that we must (in a planar embedding that we can initially freely choose) remove the outerface vertices until the graph is empty. It is well-known that there are $n$-vertex graphs with outerplanarity $\tfrac{n}{6}+Θ(1)$, and not difficult to show that the outerplanarity can never be bigger. We give here improved bounds of the form $\tfrac{n}{2g}+2g+O(1)$, where $g$ is the fence-girth, i.e., the length of the shortest cycle with vertices on both sides. This parameter $g$ is at least the connectivity of the graph, and often bigger; for example, our results imply that planar bipartite graphs have outerplanarity $\tfrac{n}{8}+O(1)$. We also show that the outerplanarity of a planar graph $G$ is at most $\tfrac{1}{2}$diam$(G)+O(\sqrt{n})$, where diam$(G)$ is the diameter of the graph. All our bounds are tight up to smaller-order terms, and a planar embedding that achieves the outerplanarity bound can be found in linear time.

Keywords

FOS: Computer and information sciences, Discrete Mathematics (cs.DM), F.2, Computer Science - Data Structures and Algorithms, G.2, F.2; G.2, Data Structures and Algorithms (cs.DS), 05C85, Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities