
pmid: 30295720
pmc: PMC6173224
Les ontologies ont gagné beaucoup de popularité et de reconnaissance dans le Web sémantique en raison de leur utilisation extensive dans les applications basées sur Internet. Les ontologies sont souvent considérées comme une bonne source de sémantique et d'interopérabilité dans tous les systèmes artificiellement intelligents. L'augmentation exponentielle des données non structurées sur le Web a fait de l'acquisition automatisée de l'ontologie à partir de texte non structuré un domaine de recherche très important. Plusieurs méthodologies exploitant de nombreuses techniques de divers domaines (apprentissage automatique, exploration de texte, représentation et raisonnement des connaissances, récupération d'informations et traitement du langage naturel) sont proposées pour apporter un certain niveau d'automatisation dans le processus d'acquisition d'ontologie à partir de texte non structuré. Cet article décrit le processus d'apprentissage de l'ontologie et la classification ultérieure des techniques d'apprentissage de l'ontologie en trois classes (linguistique, statistique et logique) et discute de nombreux algorithmes dans chaque catégorie. Cet article explore également les techniques d'évaluation de l'ontologie en soulignant leurs avantages et leurs inconvénients. De plus, il décrit la portée et l'utilisation de l'apprentissage de l'ontologie dans plusieurs industries. Enfin, l'article traite des défis de l'apprentissage de l'ontologie ainsi que de leurs orientations futures correspondantes.
Las ontologías han ganado mucha popularidad y reconocimiento en la web semántica debido a su amplio uso en aplicaciones basadas en Internet. Las ontologías a menudo se consideran una buena fuente de semántica e interoperabilidad en todos los sistemas artificialmente inteligentes. El aumento exponencial de los datos no estructurados en la web ha hecho que la adquisición automatizada de ontología a partir de texto no estructurado sea una de las áreas de investigación más destacadas. Se están proponiendo varias metodologías que explotan numerosas técnicas de diversos campos (aprendizaje automático, minería de textos, representación y razonamiento del conocimiento, recuperación de información y procesamiento del lenguaje natural) para aportar cierto nivel de automatización en el proceso de adquisición de ontologías a partir de texto no estructurado. Este documento describe el proceso de aprendizaje ontológico y la clasificación adicional de las técnicas de aprendizaje ontológico en tres clases (lingüística, estadística y lógica) y analiza muchos algoritmos en cada categoría. Este documento también explora las técnicas de evaluación ontológica destacando sus pros y sus contras. Además, describe el alcance y el uso del aprendizaje ontológico en varias industrias. Finalmente, el documento discute los desafíos del aprendizaje de la ontología junto con sus correspondientes direcciones futuras.
Ontologies have gained a lot of popularity and recognition in the semantic web because of their extensive use in Internet-based applications. Ontologies are often considered a fine source of semantics and interoperability in all artificially smart systems. Exponential increase in unstructured data on the web has made automated acquisition of ontology from unstructured text a most prominent research area. Several methodologies exploiting numerous techniques of various fields (machine learning, text mining, knowledge representation and reasoning, information retrieval and natural language processing) are being proposed to bring some level of automation in the process of ontology acquisition from unstructured text. This paper describes the process of ontology learning and further classification of ontology learning techniques into three classes (linguistics, statistical and logical) and discusses many algorithms under each category. This paper also explores ontology evaluation techniques by highlighting their pros and cons. Moreover, it describes the scope and use of ontology learning in several industries. Finally, the paper discusses challenges of ontology learning along with their corresponding future directions.
اكتسبت الأنطولوجيات الكثير من الشعبية والاعتراف في الويب الدلالي بسبب استخدامها المكثف في التطبيقات القائمة على الإنترنت. غالبًا ما تعتبر الأنطولوجيات مصدرًا جيدًا للدلالة وقابلية التشغيل البيني في جميع الأنظمة الذكية بشكل مصطنع. جعلت الزيادة الهائلة في البيانات غير المنظمة على الويب من الاستحواذ الآلي على الأنطولوجيا من النص غير المنظم مجالًا بحثيًا بارزًا. يتم اقتراح العديد من المنهجيات التي تستغل العديد من التقنيات في مختلف المجالات (التعلم الآلي، واستخراج النصوص، وتمثيل المعرفة والاستدلال، واسترجاع المعلومات، ومعالجة اللغة الطبيعية) لتحقيق مستوى معين من الأتمتة في عملية اكتساب الأنطولوجيا من النص غير المنظم. تصف هذه الورقة عملية تعلم الأنطولوجيا وتصنيف تقنيات تعلم الأنطولوجيا إلى ثلاث فئات (اللغويات والإحصاء والمنطق) وتناقش العديد من الخوارزميات تحت كل فئة. تستكشف هذه الورقة أيضًا تقنيات تقييم الأنطولوجيا من خلال تسليط الضوء على إيجابياتها وسلبياتها. علاوة على ذلك، فإنه يصف نطاق واستخدام تعلم الأنطولوجيا في العديد من الصناعات. أخيرًا، تناقش الورقة تحديات تعلم الأنطولوجيا جنبًا إلى جنب مع توجهاتها المستقبلية المقابلة.
FOS: Computer and information sciences, Artificial intelligence, Biomedical Ontologies and Text Mining, QoS-Aware Web Services Composition and Semantic Matching, Review, Epistemology, Ontology learning, Machine Learning, Suggested Upper Merged Ontology, Artificial Intelligence, Surveys and Questionnaires, Biochemistry, Genetics and Molecular Biology, Data Mining, Humans, Industry, Information retrieval, Semantic Web Stack, Molecular Biology, Natural Language Processing, Semantic Web, Ontology engineering, Ontology, Natural language processing, Life Sciences, Linguistics, Semantics (computer science), Open Biomedical Ontologies, Knowledge representation and reasoning, Computer science, Ontology-based data integration, Process ontology, FOS: Philosophy, ethics and religion, Programming language, World Wide Web, Semantic Matching, OWL-S, Philosophy, Databases as Topic, Vocabulary, Controlled, Computer Science, Physical Sciences, Phenotype Ontology, Upper ontology, Semantic Web and Ontology Development, Ontology Inference Layer, Information Systems
FOS: Computer and information sciences, Artificial intelligence, Biomedical Ontologies and Text Mining, QoS-Aware Web Services Composition and Semantic Matching, Review, Epistemology, Ontology learning, Machine Learning, Suggested Upper Merged Ontology, Artificial Intelligence, Surveys and Questionnaires, Biochemistry, Genetics and Molecular Biology, Data Mining, Humans, Industry, Information retrieval, Semantic Web Stack, Molecular Biology, Natural Language Processing, Semantic Web, Ontology engineering, Ontology, Natural language processing, Life Sciences, Linguistics, Semantics (computer science), Open Biomedical Ontologies, Knowledge representation and reasoning, Computer science, Ontology-based data integration, Process ontology, FOS: Philosophy, ethics and religion, Programming language, World Wide Web, Semantic Matching, OWL-S, Philosophy, Databases as Topic, Vocabulary, Controlled, Computer Science, Physical Sciences, Phenotype Ontology, Upper ontology, Semantic Web and Ontology Development, Ontology Inference Layer, Information Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 170 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
