Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1145/371189...
Article . 2025 . Peer-reviewed
License: ACM Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC SA
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

CLID-MU: Cross-Layer Information Divergence Based Meta Update Strategy for Learning with Noisy Labels

Authors: Ruofan Hu; Dongyu Zhang; Huayi Zhang; Elke Rundensteiner;

CLID-MU: Cross-Layer Information Divergence Based Meta Update Strategy for Learning with Noisy Labels

Abstract

Learning with noisy labels (LNL) is essential for training deep neural networks with imperfect data. Meta-learning approaches have achieved success by using a clean unbiased labeled set to train a robust model. However, this approach heavily depends on the availability of a clean labeled meta-dataset, which is difficult to obtain in practice. In this work, we thus tackle the challenge of meta-learning for noisy label scenarios without relying on a clean labeled dataset. Our approach leverages the data itself while bypassing the need for labels. Building on the insight that clean samples effectively preserve the consistency of related data structures across the last hidden and the final layer, whereas noisy samples disrupt this consistency, we design the Cross-layer Information Divergence-based Meta Update Strategy (CLID-MU). CLID-MU leverages the alignment of data structures across these diverse feature spaces to evaluate model performance and use this alignment to guide training. Experiments on benchmark datasets with varying amounts of labels under both synthetic and real-world noise demonstrate that CLID-MU outperforms state-of-the-art methods. The code is released at https://github.com/ruofanhu/CLID-MU.

KDD 2025, 12 pages, 7 figures

Related Organizations
Keywords

Machine Learning, FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities