Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Scientific Computing
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Corrected Inexact Proximal Augmented Lagrangian Method with a Relative Error Criterion for a Class of Group-Quadratic Regularized Optimal Transport Problems

A corrected inexact proximal augmented Lagrangian method with a relative error criterion for a class of group-quadratic regularized optimal transport problems
Authors: Lei Yang; Ling Liang; Hong T. M. Chu; Kim-Chuan Toh;

A Corrected Inexact Proximal Augmented Lagrangian Method with a Relative Error Criterion for a Class of Group-Quadratic Regularized Optimal Transport Problems

Abstract

The optimal transport (OT) problem and its related problems have attracted significant attention and have been extensively studied in various applications. In this paper, we focus on a class of group-quadratic regularized OT problems which aim to find solutions with specialized structures that are advantageous in practical scenarios. To solve this class of problems, we propose a corrected inexact proximal augmented Lagrangian method (ciPALM), with the subproblems being solved by the semi-smooth Newton ({\sc Ssn}) method. We establish that the proposed method exhibits appealing convergence properties under mild conditions. Moreover, our ciPALM distinguishes itself from the recently developed semismooth Newton-based inexact proximal augmented Lagrangian ({\sc Snipal}) method for linear programming. Specifically, {\sc Snipal} uses an absolute error criterion for the approximate minimization of the subproblem for which a summable sequence of tolerance parameters needs to be pre-specified for practical implementations. In contrast, our ciPALM adopts a relative error criterion with a \textit{single} tolerance parameter, which would be more friendly to tune from computational and implementation perspectives. These favorable properties position our ciPALM as a promising candidate for tackling large-scale problems. Various numerical studies validate the effectiveness of employing a relative error criterion for the inexact proximal augmented Lagrangian method, and also demonstrate that our ciPALM is competitive for solving large-scale group-quadratic regularized OT problems.

37 pages, 6 figures

Keywords

Large-scale problems in mathematical programming, Convex programming, optimal transport, group-quadratic regularizer, Optimization and Control (math.OC), Linear programming, relative error criterion, proximal augmented Lagrangian method, FOS: Mathematics, Mathematics - Optimization and Control, 90C05, 90C06, 90C25

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green