
In this paper, we consider a distributed constrained optimization problem with delayed subgradient information over the time-varying communication network, where each agent can only communicate with its neighbors and the communication channel has a limited data rate. We propose an adaptive quantization method to address this problem. A mirror descent algorithm with delayed subgradient information is established based on the theory of Bregman divergence. With non-Euclidean Bregman projection-based scheme, the proposed method essentially generalizes many previous classical Euclidean projection-based distributed algorithms. Through the proposed adaptive quantization method, the optimal value without any quantization error can be obtained. Furthermore, comprehensive analysis on convergence of the algorithm is carried out and our results show that the optimal convergence rate $O(1/\sqrt{T})$ can be obtained under appropriate conditions. Finally, numerical examples are presented to demonstrate the effectiveness of our algorithm and theoretical results.
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
