Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/lra.20...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Informed Federated Learning to Train a Robotic Arm Inverse Dynamic Model

Authors: Gabriel Jimenez-Perera; Brayan Valencia-Vidal; Niceto R. Luque; Eduardo Ros; Francisco Barranco;

Informed Federated Learning to Train a Robotic Arm Inverse Dynamic Model

Abstract

Access to real-world data in robotics domains is often challenging due to restrictions on data sharing and limited availability. Although privacy and intellectual property concerns are the main barriers, ensuring data access is crucial for advancing data-driven models. Specifically, machine-learning-based inverse dynamic models show promising results for nonrigid robot identification, but the data used to train them are often kept private due to intellectual property protections. Federated learning proposes a methodology to access such data without centralizing them in a single repository, thus avoiding intellectual property limitations. We propose a solution that uses federated learning to train a model from distributed data to develop a robust robotic arm inverse dynamic model. Our approach demonstrates the feasibility of using a machine learning method in which local robots train on their own data while collaborating without sharing raw information. Furthermore, we propose a novel custom aggregation method that integrates locally learned solutions from different workspaces into a single global model without requiring raw data sharing. This method improves accuracy in our federated solution by approximately 20% for the learned inverse dynamic model.

Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía

Colombian Ministry of Science, Technology, and Innovation

Spanish National Grant PID2022-141466OB-I00

Universidad de Granada / CBUA

Keywords

Distributed databases, Collaborative robots, Data sets for robot learning, Deep learning methods, Intellectual property, Data models, Federated learning, Trajectory, Training, Servers, Robots, Data privacy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid