
handle: 10481/106390
Access to real-world data in robotics domains is often challenging due to restrictions on data sharing and limited availability. Although privacy and intellectual property concerns are the main barriers, ensuring data access is crucial for advancing data-driven models. Specifically, machine-learning-based inverse dynamic models show promising results for nonrigid robot identification, but the data used to train them are often kept private due to intellectual property protections. Federated learning proposes a methodology to access such data without centralizing them in a single repository, thus avoiding intellectual property limitations. We propose a solution that uses federated learning to train a model from distributed data to develop a robust robotic arm inverse dynamic model. Our approach demonstrates the feasibility of using a machine learning method in which local robots train on their own data while collaborating without sharing raw information. Furthermore, we propose a novel custom aggregation method that integrates locally learned solutions from different workspaces into a single global model without requiring raw data sharing. This method improves accuracy in our federated solution by approximately 20% for the learned inverse dynamic model.
Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía
Colombian Ministry of Science, Technology, and Innovation
Spanish National Grant PID2022-141466OB-I00
Universidad de Granada / CBUA
Distributed databases, Collaborative robots, Data sets for robot learning, Deep learning methods, Intellectual property, Data models, Federated learning, Trajectory, Training, Servers, Robots, Data privacy
Distributed databases, Collaborative robots, Data sets for robot learning, Deep learning methods, Intellectual property, Data models, Federated learning, Trajectory, Training, Servers, Robots, Data privacy
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
