
Multiobjective evolutionary algorithms (MOEA) are an effective tool for solving search and optimization problems containing several incommensurable and possibly conflicting objectives. Unfortunately, many MOEAs face difficulties in solving problems when the number of objectives increases. In this paper, we investigate the efficacy of spatially structured MOEAs for scalable multiobjective problems. The algorithm is an extension of the standard cellular evolutionary algorithm, where the population is mapped to nodes of alternative complex networks. A selection regime based on a non-dominance rating and a crowding mechanism guides the evolutionary trajectory and an e-dominance external archive is used to maintain a spread of solutions across the Pareto-optimal front. An important outcome of this work is the classification of the network models based on their impact on convergence speed and solution quality as the number of objectives increases for a given problem.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
