
arXiv: 2401.14602
A first-order optimization algorithm has been introduced by Liu, Liu, Osher, and Li [J. Comput. Phys. 500 (2024), 19 pp.] to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms is also discussed in the numerical section.
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
