Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Inexact Boosted Difference of Convex Algorithm for Nondifferentiable Functions

Authors: Ferreira, Orizon P.; Mordukhovich, Boris S.; Santos, Wilkreffy M. S.; Souza, João Carlos O.;

An Inexact Boosted Difference of Convex Algorithm for Nondifferentiable Functions

Abstract

In this paper, we introduce an inexact approach to the Boosted Difference of Convex Functions Algorithm (BDCA) for solving nonconvex and nondifferentiable problems involving the difference of two convex functions (DC functions). Specifically, when the first DC component is differentiable and the second may be nondifferentiable, BDCA utilizes the solution from the subproblem of the DC Algorithm (DCA) to define a descent direction for the objective function. A monotone linesearch is then performed to find a new point that improves the objective function relative to the subproblem solution. This approach enhances the performance of DCA. However, if the first DC component is nondifferentiable, the BDCA direction may become an ascent direction, rendering the monotone linesearch ineffective. To address this, we propose an Inexact nonmonotone Boosted Difference of Convex Algorithm (InmBDCA). This algorithm incorporates two main features of inexactness: First, the subproblem therein is solved approximately allowing us for a controlled relative error tolerance in defining the linesearch direction. Second, an inexact nonmonotone linesearch scheme is used to determine the step size for the next iteration. Under suitable assumptions, we demonstrate that InmBDCA is well-defined, with any accumulation point of the sequence generated by InmBDCA being a critical point of the problem. We also provide iteration-complexity bounds for the algorithm. Numerical experiments show that InmBDCA outperforms both the nonsmooth BDCA (nmBDCA) and the monotone version of DCA in practical scenarios.

24 pages, 2 figures

Keywords

Optimization and Control (math.OC), FOS: Mathematics, 49J53, 90C26, 65K05, 65K10, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green