Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mathematical Modeling the Electrical Impedance of Piezoceramic Disk Oscillating in Wide Frequency Range (Part 2. Medium Frequencies)

Математичне моделювання електричного iмпедансу п’єзокерамiчного диска, що коливається в широкому дiапазонi частот (Частина 2. Середнi частоти)
Authors: C. V. Bazilo; E. V. Faure; L. M. Usyk; V. V. Tuz; A. M. Chornii;

Mathematical Modeling the Electrical Impedance of Piezoceramic Disk Oscillating in Wide Frequency Range (Part 2. Medium Frequencies)

Abstract

This paper presents further developments in mathematical modeling of the electrical impedance of a piezoceramic disk in a wide frequency range, specifically focusing on the mid-frequency range, i.e., when the elastic wavelength becomes commensurate with the radius of the piezoceramic disk, which is important for numerous modern applications. A mathematical model was developed for disk piezoelectric transducers made of piezoceramics to estimate their electrical impedance and quasi-static electrical capacity in the medium frequency range basing on their geometrical, physical, and mechanical characteristics. The research has found that a piezoceramic disc attains electromechanical anti-resonance in the medium frequency range at frequency, at which its electrical impedance follows to infinity. This effect is due to the polarization charges being completely compensated by the electric charge, when the electric current vanishes and energy consumption from the generator is absent. The calculations proved that at frequencies close to the first thickness resonance (corresponding to the dimensionless wave number from 40 to 60), the radial displacements of material particles of the disk vanish. A very rapid decrease in the levels of radial shifts with a simultaneous increase in the electromechanical resonance number was noted. The evaluation of the mechanical quality factor of piezoceramic disk elements, obtained with the developed mathematical model, closely correlates with real values, which is confirmed by the high agreement between theoretical and experimental results.

Keywords

акустоелектронiка, дисковий елемент, п’єзоелектричний перетворювач, impedance, iмпеданс, mathematical modeling, disk element, Telecommunication, piezoelectric transducer, TK5101-6720, математичне моделювання, acoustoelectronics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold