Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the perturbative formalism and a possible quantum Discrete spectrum for the Regge–Wheeler equation of a De Sitter spacetime

On the perturbative formalism and a possible quantum discrete spectrum for the Regge-Wheeler equation of a de Sitter spacetime
Authors: Stefano Viaggiu;

On the perturbative formalism and a possible quantum Discrete spectrum for the Regge–Wheeler equation of a De Sitter spacetime

Abstract

In this paper, we study the perturbative regime in the static patch of de Sitter metric in the Regge–Wheeler formalism. After realizing that perturbative regime in a de Sitter spacetime depicted in terms of usual spherical coordinates cannot be extended up to the cosmological horizon, we study perturbative equations, in particular the axial ones, in terms of the tortoise coordinate [Formula: see text]. We show that perturbative regime can be extended up to the cosmological horizon, provided that suitable boundary conditions are chosen. As an application, we explore the Regge–Wheeler equation at short distances by performing a Taylor expansion. In order to study some possible quantum effects at short distances, we impose to the equation so-obtained the same boundary conditions suitable for a quantum 3D harmonic oscillator. As a result, a discrete spectrum can be obtained. The aforementioned spectrum is analyzed and a relation with possible effects denoting quantum behavior of gravitons is suggested.

Related Organizations
Keywords

High Energy Physics - Theory, Approximation procedures, weak fields in general relativity and gravitational theory, cosmological constant, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Mathematical Physics (math-ph), General Relativity and Quantum Cosmology, Gravitational waves, Regge-Wheeler equation, 83C25, 83C35, 83C45, gravitational waves, de Sitter universe, quantum discrete spectrum, High Energy Physics - Theory (hep-th), Quantization of the gravitational field, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green