Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wasit Journal of Eng...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wasit Journal of Engineering Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallel Processing Distributed-Memory Approach Influences on Performance of Multicomputer-Multicore Systems Using Single-Process Single-Thread

Authors: Dildar Masood Abdulqader; Subhi R. M. Zeebaree; Rizgar R. Zebari; Mohammed A. M.Sadeeq; Umed H. Jader; Mohammed Mahmood Delzy;

Parallel Processing Distributed-Memory Approach Influences on Performance of Multicomputer-Multicore Systems Using Single-Process Single-Thread

Abstract

Based on client/server architecture concepts, this research suggests a method for creating a multicomputer-multicore distributed memory system that can be implemented on distributed-shared memory systems. Both of number of the participated computers and number of existed processors for each of these computers, this research was depended with the specific design and its implementation. The suggested system has two primary phases: monitoring and managing the programmes that may be executed on multiple distributed-multi-core architectures with (2, 4, and 8) CPUs to perform a certain job. There might be a single client and unlimited servers in the network. The implementation phase relies on three separate scenarios covering most of the design space. The suggested system can determine the start time, duration, CPU use, kernel time, user time, waiting time, and end time for each server in the system. Single-Process Single-Thread (SPST) is considered a possible situation while developing User Programmes (UPs). The findings confirmed that more processing power (more servers and more processors on each server) increases the speed at which tasks can be solved. There was a 2.877-fold gain in task processing speed after considering three different possible SPST UPs situations. The C# programming language is used to create this system.

Keywords

Distributed system, parallel processing, process/threads monitoring, process/threads controlling, Architectural engineering. Structural engineering of buildings, TH845-895, Environmental engineering, Electrical engineering. Electronics. Nuclear engineering, TA170-171, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold