Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ İstanbul University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of a Novel PID Controller Based on Machine Learning Algorithm for a Micro-Thermoelectric Cooler of the Polymerase Chain Reaction Device

Authors: Yılmaz Seryar Arikuşu; Nevra Bayhan;

Design of a Novel PID Controller Based on Machine Learning Algorithm for a Micro-Thermoelectric Cooler of the Polymerase Chain Reaction Device

Abstract

The combined use of Extreme Gradient Boosting (XGBoost) algorithm, one of the machine learning (ML) methods, and a generalization of Hermite-Biehler theorem to obtain a novel PID controller that will ensure robustly stable and optimized operation of a micro thermoelectric cooler (Micro-TEC), which is the main part of a Polymerase chain reaction (PCR) device, is a unique approach of our study compared to previous studies. Therefore, we first established a mathematical model of the micro-TEC by making real-time measurements and then, a new data set was created to find the optimum parameter values of PID controller, and finally, XGBoost Hyperparameters with GridSearchCV was used for the first time to predict PID controller parameters. The XGBoost algorithm achieved 97% training success and 91% test success in estimating the parameters of the PID controller. Moreover, the novel controller developed using the XGBoost algorithm in this study has an impressive speed of 3 seconds. Additionally, our proposed method was compared with various metaheuristic optimization algorithms in terms of error percentage. The error percentages of XGBoost, the equilibrium optimization, the particle swarm optimization and the artificial bee colony optimization algorithms were found to be 0.4%, 1.1%, 3.7% and 11.1%, respectively. It is observed the settling times of micro-TEC with ML-PID controller for all five PCR cycles are 4.86, 44, 83.4, 123 and 162.5 seconds, respectively, and the overshoot values are below 5%. The proposed method gave the smallest settling time, error and overshoot percentages compared to these metaheuristic optimization algorithms.

Keywords

Thermoelectric Materials, Polymers, Xgboost Algorithm, Prediction Algorithms, Thermoelectric Cooler, Temperature Control, Gridsearchcv, TK1-9971, Machine Learning, Machine Learning Algorithms, GridSearchCV, Stability Analysis, thermoelectric cooler, machine learning, XGBoost algorithm, Electrical engineering. Electronics. Nuclear engineering, Power System Stability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold