Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Scientific Journal of Astana IT University
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CLASSIFICATION OF KAZAKH MUSIC GENRES USING MACHINE LEARNING TECHNIQUES

Authors: Aigul Mimenbayeva; Gulmira Bekmagambetova; Gulzhan Muratova; Akgul Naizagarayeva; Tleugaisha Ospanova; Assem Konyrkhanova;

CLASSIFICATION OF KAZAKH MUSIC GENRES USING MACHINE LEARNING TECHNIQUES

Abstract

This article analysis a Kazakh Music dataset, which consists of 800 audio tracks equally distributed across 5 different genres. The purpose of this research is to classify music genres by using machine learning algorithms Decision Tree Classifier and Logistic regression. Before the classification, the given data was pre-processed, missing or irrelevant data was removed. The given dataset was analyzed using a correlation matrix and data visualization to identify patterns. To reduce the dimension of the original dataset, the PCA method was used while maintaining variance. Several key studies aimed at analyzing and developing machine learning models applied to the classification of musical genres are reviewed. Cumulative explained variance was also plotted, which showed the maximum proportion (90%) of discrete values ​​generated from multiple individual samples taken along the Gaussian curve. A comparison of the decision tree model to a logistic regression showed that for f1 Score Logistic regression produced the best result for classical music - 82%, Decision tree classification - 75%. For other genres, the harmonic mean between precision and recall for the logistic regression model is equal to zero, which means that this model completely fails to classify the genres Zazz, Kazakh Rock, Kazakh hip hop, Kazakh pop music. Using the Decision tree classifier algorithm, the Zazz and Kazakh pop music genres were not recognized, but Kazakh Rock with an accuracy and completeness of 33%. Overall, the proposed model achieves an accuracy of 60% for the Decision Tree Classifier and 70% for the Logistic regression model on the training and validation sets. For uniform classification, the data were balanced and assessed using the cross-validation method. The approach used in this study may be useful in classifying different music genres based on audio data without relying on human listening.

Keywords

music genre, decision tree classifier, machine learning algorithms, logistic regression, Information technology, T58.5-58.64, cross-validation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold