Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cluster Computingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cluster Computing
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The application of agglomerative hierarchical spatial clustering algorithm in tea blending

Authors: Jun Tie; Wenying Chen; Chong Sun; Tengyue Mao; Guanglin Xing;

The application of agglomerative hierarchical spatial clustering algorithm in tea blending

Abstract

Playing a significant role in production process of tea enterprise, tea blending has advantages in improving the quality of tea, expanding resource of tea, and getting higher profits. Traditional manual blending method not merely wastes time and energy but also has difficulties in optimizing blending programs. In this paper, tea blending problem is modeled as spatial clustering based on multi-dimensional hierarchy space. Tea attributes such as varieties of tea bush, process crafts and producing areas are modeled into hierarchy space with tree structure. Every node of these trees is present a value of tea attributes. So all the data tuples are mapped as points in multi-dimensional hierarchy space. And we define a similarity-based measure criterion in multi-dimensional conceptual layered space to present an agglomerative hierarchical spatial clustering based algorithm to work out the optimal blending program. Meanwhile, Dewey code is introduced to increase resolution efficiency. Dewey code is used presented the points in hierarchy space, and the codes of every point can be adopted to compute the similarity of every two points in the measure criterion. Two clustering algorithms have been proposed. We agglomerate two points which are the closest to each other according to the similarity measure criterion in hierarchy space by algorithm AGHC. In DIHC, the whole dataset is divided into small parts through K-medios until there are N clusters and N is set by users. Tea attributes are quantified and the process of tea blending is standardized. This study enable tea blending to get rid of human experience, instead of intelligent approach. The results of tea blending in this article can be accurate due to the strict consolidation doctrine. That means we will be rational when we choose which tea to be blended in practice to satisfy customers’ demands. Appropriate tea will be blended by several kinds of tea with the study in this article. Finally, experiments on real data set demonstrate the solution of tea blending proposed in this paper is greatly improving work efficiency and economic benefits.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!