Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Virtual Reality &amp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Virtual Reality & Intelligent Hardware
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finger tracking for wearable VR glove using flexible rack mechanism

Authors: Roshan Thilakarathna; Maroay Phlernjai;

Finger tracking for wearable VR glove using flexible rack mechanism

Abstract

Background: With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments. Methods: The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool. Conclusions: The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.

Keywords

TK7885-7895, Finger tracking, Computer engineering. Computer hardware, Data glove, Hand gesture, Rack and pinion, Virtual reality

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities