
Background: With the increasing prominence of hand and finger motion tracking in virtual reality (VR) applications and rehabilitation studies, data gloves have emerged as a prevalent solution. In this study, we developed an innovative, lightweight, and detachable data glove tailored for finger motion tracking in VR environments. Methods: The glove design incorporates a potentiometer coupled with a flexible rack and pinion gear system, facilitating precise and natural hand gestures for interaction with VR applications. Initially, we calibrated the potentiometer to align with the actual finger bending angle, and verified the accuracy of angle measurements recorded by the data glove. To verify the precision and reliability of our data glove, we conducted repeatability testing for flexion (grip test) and extension (flat test), with 250 measurements each, across five users. We employed the Gage Repeatability and Reproducibility to analyze and interpret the repeatable data. Furthermore, we integrated the gloves into a SteamVR home environment using the OpenGlove auto-calibration tool. Conclusions: The repeatability analysis revealed an aggregate error of 1.45 degrees in both the gripped and flat hand positions. This outcome was notably favorable when compared with the findings from assessments of nine alternative data gloves that employed similar protocols. In these experiments, users navigated and engaged with virtual objects, underlining the glove's exact tracking of finger motion. Furthermore, the proposed data glove exhibited a low response time of 17–34 ms and back-drive force of only 0.19 N. Additionally, according to a comfort evaluation using the Comfort Rating Scales, the proposed glove system is wearable, placing it at the WL1 level.
TK7885-7895, Finger tracking, Computer engineering. Computer hardware, Data glove, Hand gesture, Rack and pinion, Virtual reality
TK7885-7895, Finger tracking, Computer engineering. Computer hardware, Data glove, Hand gesture, Rack and pinion, Virtual reality
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
