
In this paper, a backward approach is proposed for maximizing net present value (NPV) in multi-mode resource constrained project scheduling problem while assuming discounted positive cash flows (MRCPSP-DCF). The progress payment method is used and all re-sources are considered as pre-emptible. The proposed approach maximizes NPV using unscheduled resources through resource calendar in backward mode. For this purpose, a Genetic Algorithm is applied to solve experimental cases with 50 variables and the results are compared with forward serial programming method. The remarkable results reveal that the backward approach is an effective way to maximize NPV in MRCPSP-DC while activity splitting is allowed. The algorithm is flexible enough to be used in real project.
Discounted Cash Flows, Genetic Algorithm, HF5001-6182, Management. Industrial management, Business, Multimode Project Scheduling, HD28-70, Pre-emptive Constrained Resources
Discounted Cash Flows, Genetic Algorithm, HF5001-6182, Management. Industrial management, Business, Multimode Project Scheduling, HD28-70, Pre-emptive Constrained Resources
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
