Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radioengineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radioengineering
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radioengineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radioengineering
Article . 2019
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Digitální knihovna VUT
Article . 2019 . Peer-reviewed
https://dx.doi.org/10.60692/kx...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/yr...
Other literature type . 2019
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Harvested Energy and Spectral Efficiency Trade-offs in Multicell MIMO Wireless Networks

مقايضات الطاقة المحصودة والكفاءة الطيفية في شبكات MIMO اللاسلكية متعددة الخلايا
Authors: Tien Ngoc Ha; Ha Hoang Kha;

Harvested Energy and Spectral Efficiency Trade-offs in Multicell MIMO Wireless Networks

Abstract

L'article se concentre sur la conception de matrices de précodage dans des réseaux d'information et de transfert d'énergie sans fil (SWIPT) simultanés à entrées multiples et sorties multiples (MIMO) dans lesquels les ensembles d'utilisateurs sont sélectionnés pour la transmission de données dans chaque intervalle de temps et les utilisateurs non sélectionnés sont dédiés à la récupération d'énergie. La conception de précodage pour le problème SWIPT est formulée comme un problème général de maximisation multi-objectif, dans lequel le taux de somme (SR) et la somme de l'énergie récoltée (SHE) sont maximisés simultanément sous les contraintes de puissance de transmission. Depuis la fonction objective de la maximisation le problème n'est pas concave dans les variables de la matrice de conception, il est difficile d'obtenir directement les solutions optimales.Pour relever ce défi, nous refondons la fonction SR en une fonction plus adaptable en appliquant la connexion entre l'erreur quadratique moyenne minimale et le débit de données réalisable.En outre, pour traiter la non-concavité de la fonction d'énergie récoltée, nous dérivons son mineur concave.Puis, nous développons un algorithme itératif efficace basé sur l'optimisation alternée (AO) pour obtenir les précodeurs optimaux.Nous analysons également la convergence et la complexité de calcul de l'algorithme proposé.Enfin, par simulation numérique résultats, nous étudions les compromis entre la SR et la SHE.

El documento se centra en el diseño de matrices de precodificación en redes inalámbricas simultáneas de información y transferencia de energía (SWIPT) de múltiples celdas y múltiples entradas y múltiples salidas (mimo) donde los conjuntos de usuarios se seleccionan para la transmisión de datos en cada intervalo de tiempo y los usuarios no seleccionados se dedican a la recolección de energía. El diseño de precodificación para el problema SWIPT se formula como un problema general de maximización multiobjetivo, en el que la tasa de suma (SR) y la energía cosechada suma (SHE) se maximizan simultáneamente bajo las restricciones de potencia de transmisión. Desde la función objetivo de la maximización problema no es cóncavo en las variables de la matriz de diseño, es difícil obtener directamente las soluciones óptimas. Para abordar este desafío, refundimos la función SR en una más susceptible aplicando la conexión entre el error cuadrático medio mínimo y la velocidad de datos alcanzable. Además, para tratar la no concavidad de la función de energía recolectada, derivamos su menor cóncava. Luego, desarrollamos un algoritmo iterativo eficiente basado en la optimización alterna (AO) para obtener los precodificadores óptimos. También analizamos la convergencia y la complejidad computacional del algoritmo propuesto. Finalmente, mediante simulación numérica resultados, investigamos las compensaciones entre la SR y ELLA.

The paper focuses on designing precoding matrices in multi-cell multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer networks (SWIPT) where the sets of users are selected for data transmission in each time slot and the unselected users are dedicated to energy harvesting.The precoding design for the SWIPT problem is formulated as a general multi-objective maximization problem, in which the sum-rate (SR) and sum harvested energy (SHE) are maximized simultaneously under the transmit power constraints.Since the objective function of the maximization problem is not concave in the design matrix variables, it is difficult to directly obtain the optimal solutions.To tackle this challenge, we recast the SR function into one more amenable by applying the connection between the minimum mean square error and achievable data rate.In addition, to deal with the non-concavity of the harvested energy function, we derive its concave minorant.Then, we develop an efficient iterative algorithm based on alternating optimization (AO) to obtain the optimal precoders.We also analyze the convergence and computational complexity of the proposed algorithm.Finally, by numerical simulation results we investigate the trade-offs between the SR and SHE.

تركز الورقة على تصميم مصفوفات الترميز المسبق في شبكات المعلومات اللاسلكية متعددة المدخلات متعددة المخرجات متعددة الخلايا (MIMO) في وقت واحد وشبكات نقل الطاقة (SWIPT) حيث يتم اختيار مجموعات المستخدمين لنقل البيانات في كل فترة زمنية ويتم تخصيص المستخدمين غير المحددين لحصاد الطاقة. تتم صياغة تصميم الترميز المسبق لمشكلة SWIPT كمشكلة تعظيم عامة متعددة الأهداف، حيث يتم تعظيم معدل المجموع (SR) ومجموع الطاقة المحصودة (SHE) في وقت واحد تحت قيود طاقة الإرسال. منذ الوظيفة الموضوعية للتعظيم المشكلة ليست مقعرة في متغيرات مصفوفة التصميم، فمن الصعب الحصول مباشرة على الحلول المثلى. ولمواجهة هذا التحدي، نقوم بإعادة صياغة وظيفة SR إلى واحدة أكثر قابلية للتطبيق من خلال تطبيق الاتصال بين الحد الأدنى لمتوسط الخطأ المربع ومعدل البيانات القابل للتحقيق. بالإضافة إلى ذلك، للتعامل مع عدم تجويف وظيفة الطاقة المحصودة، نستمد قاصرها المقعر. ثم، نقوم بتطوير خوارزمية تكرارية فعالة تعتمد على التحسين بالتناوب (AO) للحصول على الترميز المسبق الأمثل. نقوم أيضًا بتحليل التقارب والتعقيد الحسابي للخوارزمية المقترحة. أخيرًا، عن طريق المحاكاة العددية نتائج نحقق في المفاضلات بين SR و SHE.

Keywords

Wireless Energy Harvesting, Wireless Energy Harvesting and Information Transfer, precoding design, Multiuser MIMO, Engineering, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Efficient energy use, Spectral efficiency, Electrical and Electronic Engineering, Computer network, Multicell MU-MIMO, Physical Layer Security in Wireless Communications, Spectral Efficiency, Electronic engineering, Statistics, SWIPT, Next Generation 5G Wireless Networks, Computer science, spectral efficiency, TK1-9971, MIMO, Channel (broadcasting), Electrical engineering, Physical Sciences, Wireless, Telecommunications, Electrical engineering. Electronics. Nuclear engineering, Wireless Power Transfer, RF Energy Harvesting, Energy (signal processing), Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
gold