Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Materials...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Materials Science: Materials in Medicine
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Inserm
Article . 2007
Data sources: HAL-Inserm
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An electrodeposition method of calcium phosphate coatings on titanium alloy

Authors: Lopez-Heredia, Marco Antonio; Weiss, Pierre; Layrolle, Pierre;

An electrodeposition method of calcium phosphate coatings on titanium alloy

Abstract

Calcium phosphates coatings were deposited onto titanium alloy discs via en electrodeposition method. Titanium alloy discs were blasted with calcium phosphate particles, then etched in a mixture of nitric and fluoric acids and rinsed in demineralized water. The titanium alloy disc (cathode) and platinum mesh (anode) were immersed in a supersaturated calcium phosphate electrolyte buffered at pH 7.4 and connected to a current generator. The microstructure, chemical composition and crystallinity of the electrodeposited coatings were studied as function of time 10-120 min, temperature 25-80 degrees C, current density 8-120 mA/cm(2), magnesium and hydrogen carbonate amounts (0.1-1 mM). Uniform calcium phosphate coatings were obtained in 30 min but coating thickness increased with deposition time. Raising the temperature of electrolyte resulted in more uniform coatings as ionic mobility increased. Low current density was preferable due to hydrogen gas evolving at the cathode, which disturbed the deposition of calcium phosphate crystals on titanium. The amounts of magnesium and hydrogen carbonate ions affected both the homogeneity and morphology of the coatings. This study showed that the electrodeposition method is efficient for coating titanium with osteoconductive calcium phosphate layers.

Keywords

Biocompatible, Calcium Phosphates, MESH: Materials Testing, Surface Properties, MESH: Bone Substitutes, MESH: Electroplating, MESH: Porosity, Coated Materials, Biocompatible, Materials Testing, Alloys, MESH: Particle Size, Particle Size, [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials, MESH: Crystallization, MESH: Surface Properties, Titanium, MESH: Calcium Phosphates, Electroplating, [SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials, MESH: Coated Materials, MESH: Titanium, Bone Substitutes, Adsorption, MESH: Adsorption, Crystallization, Porosity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
gold