
arXiv: 1506.08938
Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues: fast algorithms, fully parallel distributed feasibility and limited internal memory. This research aims to design a fast fully parallel and distributed algorithm using limited internal memory to reach high NMF performance for large datasets. In particular, we propose a flexible accelerated algorithm for NMF with all its $L_1$ $L_2$ regularized variants based on full decomposition, which is a combination of an anti-lopsided algorithm and a fast block coordinate descent algorithm. The proposed algorithm takes advantages of both these algorithms to achieve a linear convergence rate of $\mathcal{O}(1-\frac{1}{||Q||_2})^k$ in optimizing each factor matrix when fixing the other factor one in the sub-space of passive variables, where $r$ is the number of latent components; where $\sqrt{r} \leq ||Q||_2 \leq r$. In addition, the algorithm can exploit the data sparseness to run on large datasets with limited internal memory of machines. Furthermore, our experimental results are highly competitive with 7 state-of-the-art methods about three significant aspects of convergence, optimality and average of the iteration number. Therefore, the proposed algorithm is superior to fast block coordinate descent methods and accelerated methods.
parallel and distributed algorithm, Numerical Analysis (math.NA), Nonconvex programming, global optimization, Factorization of matrices, non-negative matrix factorization, Optimization and Control (math.OC), cooridinate descent algorithm, FOS: Mathematics, Mathematics - Numerical Analysis, Mathematics - Optimization and Control, accelerated anti-lopsided algorithm
parallel and distributed algorithm, Numerical Analysis (math.NA), Nonconvex programming, global optimization, Factorization of matrices, non-negative matrix factorization, Optimization and Control (math.OC), cooridinate descent algorithm, FOS: Mathematics, Mathematics - Numerical Analysis, Mathematics - Optimization and Control, accelerated anti-lopsided algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
